Cours: Force des acides et des bases

Rappel : Qu’est-ce qu’une solution acide ?
Une solution acide est préparée par dissolution d’un acide dans de l’eau.
Lors de cette dissolution il y a toujours apparition d’ions oxonium H_3O^+.

Exemples
- Une solution aqueuse d’acide chlorhydrique est préparée par dissolution du chlorure d’hydrogène HCl gazeux dans l’eau selon l’équation bilan : $HCl + H_2O = H_3O^+ + Cl^-$
- Une solution aqueuse d’acide éthanoïque est préparée par dissolution du liquide acide éthanoïque CH_3COOH dans l’eau selon l’équation bilan : $CH_3COOH + H_2O = H_3O^+ + CH_3COO^-$

De façon générale on peut écrire l’équation-bilan de l’acide HA dissout, réagissant avec l’eau :

$$AH + H_2O = H_3O^+ + A^-$$

1- Acides forts et acides faibles.

1- Réfléchissons :
On considère un volume V_{sol} d’une solution aqueuse d’acide HA obtenue selon l’équation :

$$AH + H_2O = H_3O^+ + A^-$$

a- Donner La formule qui permet de calculer
la concentration molaire Ca en acide apporté HA, de la solution. $Ca = n/V$

b- Donner La formule qui permet de calculer
la concentration des ions oxonium $[H_3O^+]$ dans cette solution. $[H_3O^+]=10^{-pH}$

c- Que peut-on dire des quantités de matière $n(AH)$ et $n(H_3O^+)$ si la réaction de dissolution est totale ? $AH + H_2O \rightarrow H_3O^+ + A^-$ avec $n(HA) = n(H_3O^+)$

d- Donner une relation entre Ca et $[H_3O^+]$. $Ca= [H_3O^+]$

Conclusion 1:
Un acide est dit fort si, lorsque mis en solution dans l’eau, la concentration des ions oxonium $[H_3O^+]$ est égale à la concentration apportée en acide de la solution. $Ca= [H_3O^+]$

e- Que peut-on dire des quantités de matière $n(AH)$ et $n(H_3O^+)$ si la réaction de dissolution est limitée ? $n(H_3O^+)< n(AH)$

f- Comparer Ca et $[H_3O^+]$: $[H_3O^+]< Ca$

Conclusion 2 :
Un acide est dit faible si, lorsque mis en solution dans l’eau, la concentration en ions oxonium $[H_3O^+]$ est inférieure à la concentration de la solution. $[H_3O^+]< Ca$

2- Définitions à retenir

Un acide est dit **FORT** si sa réaction avec l’eau est une réaction **TOTALE**.
Alors $Ca= [H_3O^+]$

Si sa réaction avec l’eau est **limitée (ou incomplète)**, on dit que l’acide est **FAIBLE**
Alors $[H_3O^+]< Ca$
Rappel : Qu’est-ce qu’une solution basique ?
Une solution basique est préparée par **dissolution d’une base** dans de l’eau. Lors de cette dissolution il y a **toujours** apparition d’ions hydroxyde HO^-

Exemples
- Une solution aqueuse d’hydroxyde de sodium (Na+ + HO-) est préparée par dissolution de soude NaOH dans l’eau selon l’équation bilan : $\text{NaOH} + \text{H}_2\text{O} = (\text{HO}^- + \text{Na}^+)_{aq}$
- Une solution aqueuse d’ammoniaque est préparée par dissolution d’ammoniac gazeux dans l’eau selon l’équation bilan : $\text{NH}_3 + \text{H}_2\text{O} = (\text{NH}_4^+ + \text{HO}^-)_{aq}$

De façon générale on peut écrire l’équation-bilan d’une base B dissoute, réagissant avec l’eau : $B + \text{H}_2\text{O} = \text{BH}^+ + \text{HO}^- \leftrightarrow \text{c’est l’ion HYDROXYDE}$

I- **Bases fortes et bases faibles.**

Définition : Base forte
Une base est dite **forte** si, lorsque mise en solution dans l’eau, la concentration des ions hydroxyde HO- est égale à la concentration apportée en base de la solution. $C_b = [\text{HO}^-]$

Exemple de bases fortes
- Une solution d’hydroxyde de sodium (communément appelée la soude) de formule ($\text{Na}^+ + \text{HO}^-)$
- Une solution de potasse de formule ($\text{K}^+ + \text{HO}^-)$

C’est l’ion HO- qui interviendra dans la réaction avec l’eau, Na+ et K+ sont des ions spectateurs.

Le couple en jeu est donc $\text{H}_2\text{O} / \text{HO}^-$

A retenir : L’équation de réaction d’une base forte dans l’eau s’écrit : $\text{NaOH} \xrightarrow{H_2O} \text{HO}^- + \text{Na}^+_{aq}$

Définition : base faible
Une base est dite **faible** si, lorsque mise en solution dans l’eau, la concentration en ions hydroxyde HO- est inférieure à la concentration de la solution. : $C_b > [\text{HO}^-]$

On rappelle que $[\text{HO}^-] = \text{K}_e$ donc $[\text{HO}^-] = \text{Ke}/[\text{H}_3\text{O}^+]$

Application :
On prépare une solution d’ammoniaque à $C = 1,0 \times 10^{-2}$ mol/L. On mesure le pH = 10,6

On calcule $[\text{H}_3\text{O}^+]$ On en déduit $[\text{HO}^-]$......................

On compare C_b et $[\text{HO}^-]$..

On conclut...